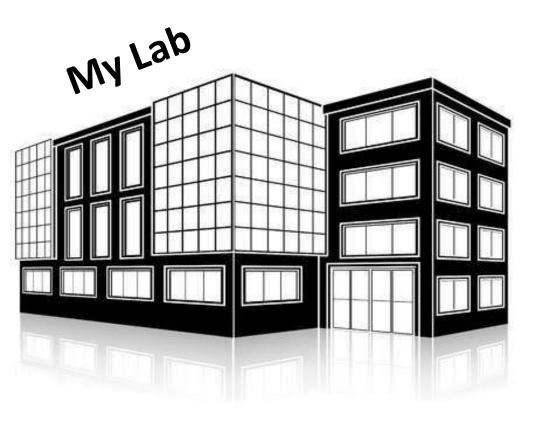


QC Challenges and Solutions

- Clinical Biochemistry.

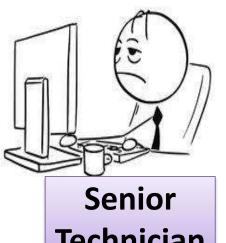

A handful of thoughts Dr. Pamela Christudoss

Cr. Pamela Christudoss
Professor & HOD
Dept of Clin. Biochemistry
CMC Vellore

I dreamt...

Director of a laboratory





Technician

STAT Technician

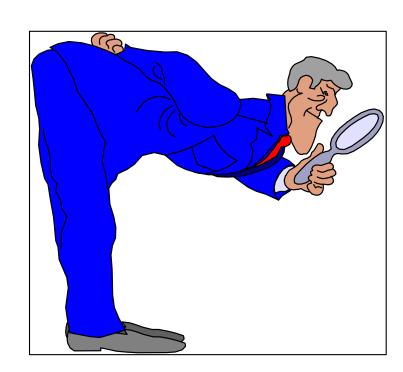
Manager

..Lets see what Quality is all about!

That's my team..

What is Quality?

Quality is doing the right things and doing those things right Philip Crosby (1970)


Establishing conditions such that the quality of all tests performed in the medical lab assists clinicians in practicing good medicine?

~ Dr. Callum G Fraser

Quality is....

invisible when GOOD

 impossible to ignore when BAD

Quality

□ Sum-total of all the characteristics of a service that has a bearing upon the utilization of the service to the entire satisfaction of the customer.

□Conformance to the requirements of customers.

Clinical Laboratory Quality

1-Accuracy of result

2-Reliability of result

3-Timeliness of result

Quality Assurance

in the biochemistry laboratory is intended to ensure the reliability of the laboratory tests.

Achieved by ———

Quality Control

• QC is the study of those errors, which are the responsibility of the laboratory and of the procedures used to recognize and

Statistical process

minimize them.

Quality Control

- Essential element of the QMS
- Component of Quality Assurance
- Monitor the analytic phase

Why Quality Control?

1. Quality Control gives reliability of information about patient's in the form of correct lab results.

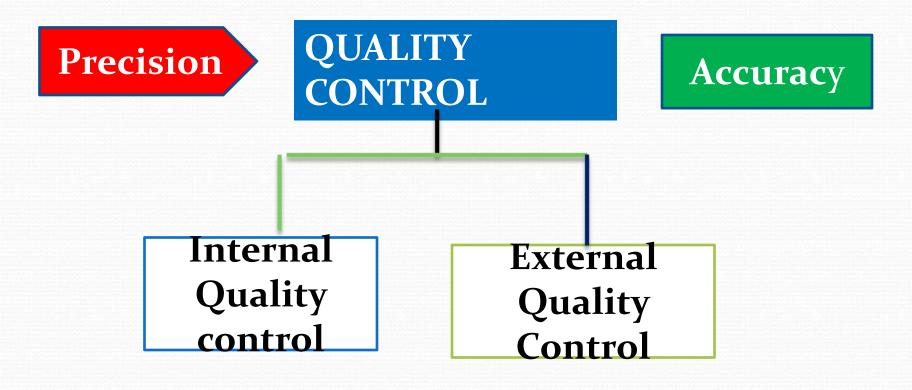
2. Reliability or correctness of a lab result depends on precision, accuracy, sensitivity, specificity & appropriateness of the method used

3. Reject results when there is evidence of errors

4.Monitor and evaluate the Analytical process that produces patients results

5.It is designed to give clinicians confidence

in the methods used.



Quality in Laboratory Medicine "Fit For Purpose"

- Right patient
- Right test
- Right specimen
- Right cost
- Right result
- Right reference data

Two complementary components of Quality procedures are:

IQC and **EQA**

IQC

Monitors day-to-day reproducibility-precision, and detects frank errors in any one day's procedures

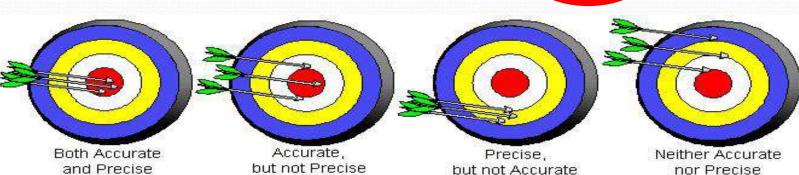
EQA

Aims at detecting constant differences ("bias") between one laboratory's results and those of others

personnel, document
 & reagent control
 instrumentation, CA

International, national

Accuracy vs. Precision

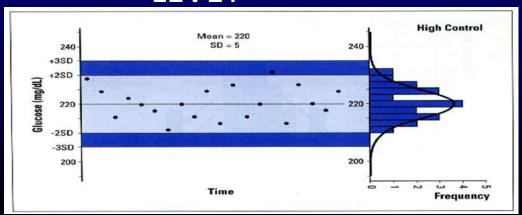

Accuracy

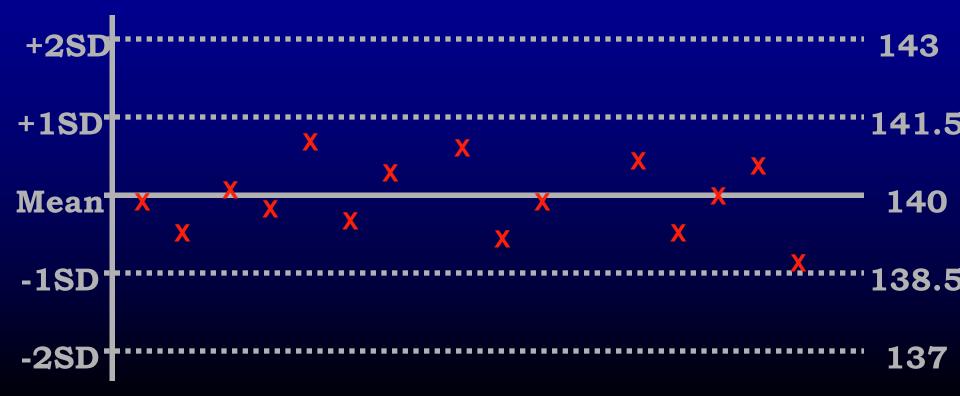
How well a measurement agrees with an accepted value

Precision

How well a series of measurements agree with each other

> Analytical Errors




LEVEY

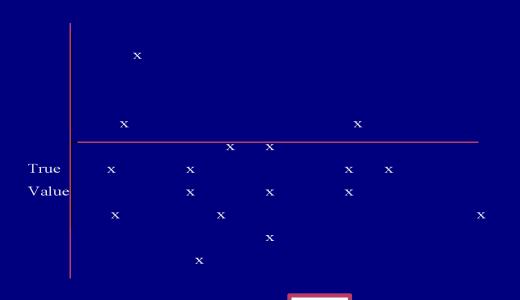
JENNING

L.J Chart

PERFECT LJ CHART

Causes for IQC out-of-control

Types of errors

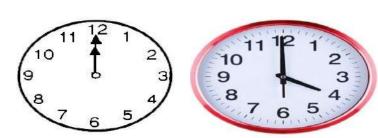

Random errors

Systematic errors

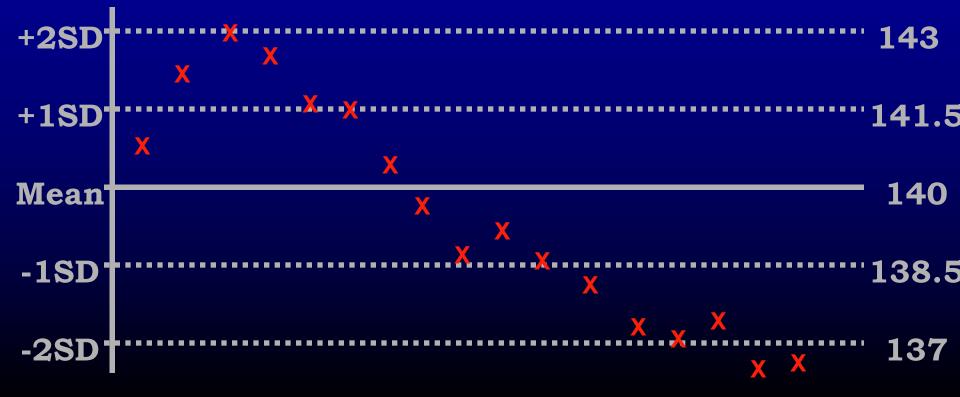
A- RANDOM ERROR

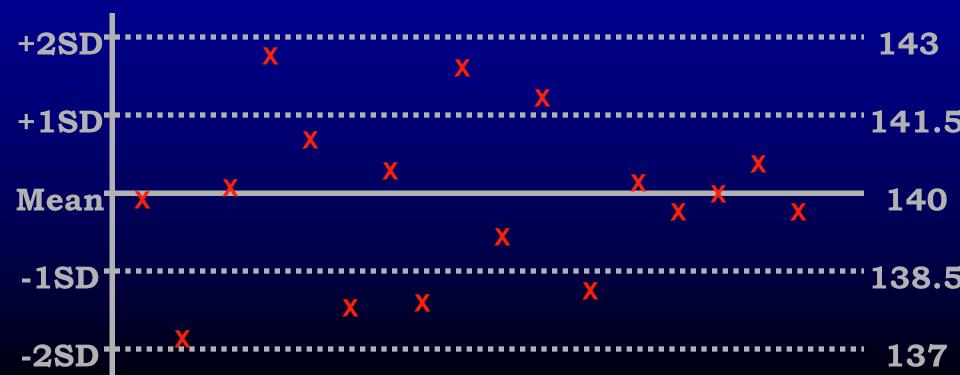
Errors that Occur in the Lab:

A- Random errors:


- 1 misreading of the colorimeter Incorrect reading of Std curve/ wrong std curve
- 2 Transcriptional error
- 3- Incorrect placing of decimal point
- 4- Random Air bubble.
- 5 Incorrect reconstitution of QC

- 6. Calculation error
- a incorrect results for dilution, wrong fa
- **b** calculates results mentally


- 8- Operator technique
- 9- Noon / 4 pm clock syndrome



Systematic Error - + ve Bias

Systematic error – trend

2- Consistent or systematic error

1-Failure to adhere strictly to the recommended procedure

2 - Use of incorrectly prepared standard or reagent. uncalibrated cuvettes, wrong wavelength, wrong pipette, non-reagent grade water

- 3-Dirty filter wheel / failing light source
- 4-Incorrect handling of QC material/ calibrator
- 5-Improper temperature & humidity in the testing area

2-Consistent or systematic error

accurate.

8- Dist. Water instead of buffer

9- Ph meter standardized with wrong buffer.

10- Contaminated and outdated reagent / substrate / kits/standard/control

11- Equipment problems.

Remedial Actions

- Reanalyse the same control immediately / fresh vial of control
- 2. Repeat the test using new control from different lot
- 3. Check the reagent system
- 4. Perform maintenance and rerun the control
- 5. Recalibrate (only if necessary) and rerun the con

Monitoring accuracy and precision of tests

- Quality of distilled water
- Calibration of testing instruments, balances, centrifuges, semiautomatic pipettes,
- regular servicing and maintaining of equipment
- Use calibrators, QC in each procedure daily.

Two important points that should be considered in selecting the IQC are:

[1] The QC material used must cover the analytical

conc: normal/abnormal controls,

[2] Controls produced by the manufacturer of the test or analyzer should not be used.

WHAT IS EQA

Process that assesses

laboratories analytical and interpretative skills compared to other laboratories by testing the accuracy and quality of their results.

Aim: Educational

- a) External verification of quality of service
 - b) Improve quality of care

Not

To judge centres

The Role of External Quality Assurance

- Confirm assay performance
- Identify poor assay performance
 - Confirm correction of poor performance
 - Main Issues
 - -Accuracy (precision + bias)
 - -Precision

➤ A technique to challenge a laboratory's internal QC methods and procedure

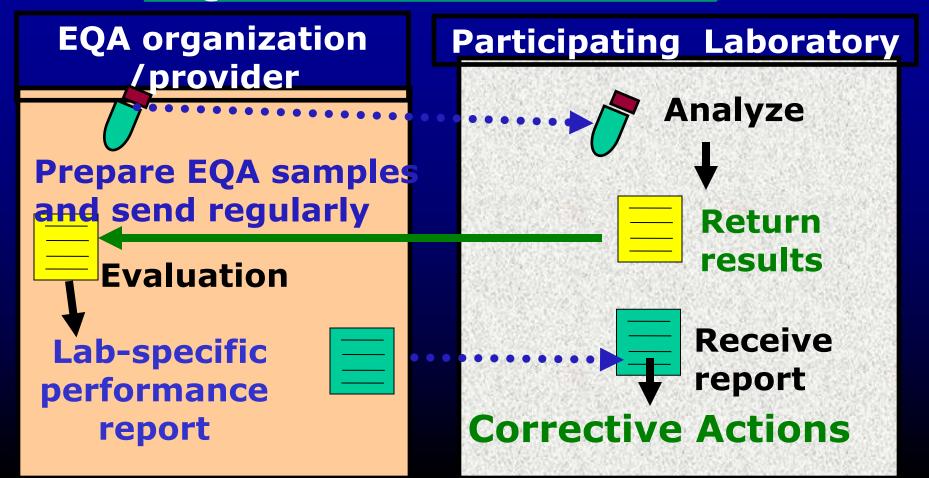
4 –A 's

- √ 1) Acceptable
- √ 2) Accessible
- √ 3) Affordable
- √ 4) Appropriate

Principles of EQA

➤ Same samples sent to all participating laboratories

- >Assessed for analytical accuracy
 - clerical accuracy of the rep
 - interpretation of the result


Principles of EQA

Identifies imperfect practice and improves Quality

Investigating factors affecting Quality eg Interferences, Calib errors, etc.

Allows comparisons, evaluation of methods/ Reagents / Instruments

EQAS- Provider & Lab

Lack of consistency between different methods and procedures are due to: Different

- >Analytical Specificity
- > Analytical Sensitivity
- Calibration

Causes for failures in EQAS

1.Incorrect Handling of QC Materials

- a) Incorrect Reconstitution 2ml/5ml,
- b) Incorrect Storage Conditions
- c) Evaporation of Prepared QC Materials
- 2. Incorrect Procedure
- a) Improper Mixing, b) Incorrect Calculation
- c) Incorrect Unit (T3- ng/dl / ng/ml)

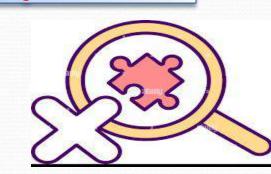
Causes for failures in EQAS

- 3. Technical Problem with a Method
- a) Calibration Problem
- b) Inadequate Maintenance
- 3) Deterioration of Reagents, expired kit
- 4. Choosing wrong method /Instrument group
- 5. Wrong month sample used for analysis.
- 6. Results not uploaded before due date

VARIABLES THAT MAY CAUSE IMPRECISION

- ☐ Un calibrated pipettes
- Quality of deionized water

- ☐ SOP not followed properly
- □ Transcription errors (sodium/ potassium
 - or protein/ albumin result)

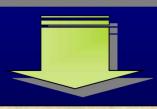


TROUBLE SHOOTING IN EQAS

Check the method selected

- Check the label on the vial
- Check the unit of reporting / conversion

- Check for transcriptional error
- Check the volume reconstitution error


•Relook at the IQC data on the day EQAS sample was analysed

- Recheck if any calibration, change of reagent was done on that day
- Look for trends bias

EQA Should Lead to Actions

EQA

Identify problems

EQAS BENEFITS

EQA is not for policing, it is a friendly hand shake

Allows switching over to better methods.

Allows comparison of performance and results

EQA Benefits

 Serves as an early warning-system for problem (Identifies systematic kit problems)

Provides objective evidence of laboratory quality

Identifies training needs

Participating lab's responsibility

- chose the right Scheme for your needs
- analyze EQA samples in right time
- monitor and maintain records
- investigate deficiencies
- manage corrective action efforts
- communicate outcomes within lab

Participation in EQAS gives the lab personnel a chance to say with pride that we are a profession willing to examine ourselves and constantly strive for

improvement in health care industry.

Major Challenges:

1- Achieving

2- Maintaining

3-Improving Accuracy

4-Timeliness

5-Reliability

THE TWELVE

QUALITY ESSENTIALS

ORGANISATION

Vision, Commitment

Team building

Motivation skills

Good Communication

PERSONNEL

Recruitment, Training,

Competency assessment

Continuing Education

Performance Appraisal

Personal records

EQUIPMENT

REAGENT INVENTORY

Right selection,

Good quality reagents

Performance evaluation

Appropriate cost

Maintenance, trouble shooting

Proper storage

Frequent service

Expired kits discarded

PROCESS CONTROL

Sample management

Lab handbook: Collection, retention, disposal.

DOCUMENTS AND RECORDS

SOP's, Policies: defined by Laboratory

Maintenance of Records

Information and Management

3

Occurrence Management

Patient & Sample identifiers (barcode system)

Occurrence

Computer /electronicbased

Any event with negative impact

•Manual / paper based (data entry, legibility,

- **Sources of occurrences Unclear responsibilities**
- SOP not followed
- Pre and Post examination error

ASSESSSMENT

10

Process Improvement

- -Audits : External /Internal
- •Systematic, independent process to determine if required criteria are met.

Types of EQA:

PT/ Retesting

- Constant improvement
- ■Plan –Do –Check- Act

Commitment, planning, leadership, Participation

11

Facilities and safety

12 Customer Service

Identification of risks

PPE

Lab safety program

Lab customers:
Physicians, Patient

- Feed back surveys:
- From clinicians

Keys to successful quality control

- Adequately trained, interested and committed staff.
- Common-sense use of practical procedures.
- Willingness to admit and rectify mistakes.
- Effective communication.
- Continuing lab education, Regular Audit

"It is not because things are difficult that we do not dare, it is because we do not dare that they are difficult"

> Lucio Anneo Seneca Roman philosopher

Team Concept

Together Everyone Achieve More

